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A "nite element analysis for a rotating cantilever beam is presented in this study. Based on
a dynamic modelling method using the stretch deformation instead of the conventional axial
deformation, three linear partial di!erential equations are derived from Hamilton's
principle. Two of the linear di!erential equations are coupled through the stretch and
chordwise deformations. The other equation is an uncoupled one for the #apwise
deformation. From these partial di!erential equations and the associated boundary
conditions, are derived two weak forms: one is for the chordwise motion and the other is for
the #apwise motion. The weak forms are spatially discretized with newly de"ned two-node
beam elements. With the discretized equations, the behaviours of the natural frequencies are
investigated for the variation of the rotating speed. In addition, the time responses and
distributions of the deformations and stresses are computed when the rotating speed is
prescribed. The e!ects of the rotating speed pro"le on the vibrations of the beam are also
investigated.

( 2002 Academic Press
1. INTRODUCTION

Rotating cantilever beams are found in several practical engineering examples such as
turbine blades and aircraft rotary wings. For reliable and economic designs of the
structures, it is necessary to estimate the dynamic characteristics of those structures
accurately and e$ciently. Since signi"cant variations of dynamic characteristics result from
rotational motion of the structures, they have been investigated for many years.

An early analytical model to calculate natural frequencies of a rotating cantilever beam
was suggested by Southwell and Gough [1]. Based on the Rayleigh energy theorem,
a simple equation that relates the natural frequency to the rotating frequency of a beam was
suggested. This equation is known as the Southwell equation, and widely used by many
engineers nowadays. Later, to obtain more accurate natural frequencies, a linear partial
di!erential equation that governs bending vibration of a rotating beam was derived by
Schilhansl [2]. Applying the Ritz method to the equation, more accurate coe$cients for the
Southwell equation could be obtained. Since the early 1970s, due to the progress of
computing technologies, a large number of papers based on numerical approaches have
022-460X/02/010147#18 $35.00/0 ( 2002 Academic Press
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been published. For instance, in references [3, 4], approximation methods for the modal
analysis of rotating beams were employed. More complex shapes and the e!ects of beams
were also considered. The e!ects of tip mass [5, 6], elastic foundation and cross-sectional
variation [7], shear deformation [8], pre-twist and orientation of a blade [9], and
gyroscopic damping e!ect [10] on the modal characteristics of rotating cantilever beams
were studied. Survey papers for the vibration analysis of rotating structures are available
[11, 12].

The most widely used modelling method for the transient analysis of structures is the
classical linear modelling method [13}15]. This modelling method employs the Cartesian
deformation variables and the linear Cauchy strain measures. It has several merits such as
simplicity of formulation, ease of implementation in "nite elements methods, and e$ciency
of computation which results from the use of co-ordinate reduction techniques [16, 17].
This modelling method, however, often provides erroneous results when structures undergo
overall motion such as rotation. To resolve the problem of the classical linear modelling
method, several non-linear modelling methods [18}20] have been developed. With these
non-linear modelling methods, the problem of accuracy can be resolved. However, serious
computational ine$ciency results from the non-linearity that disables the co-ordinate
reduction techniques. More recently, a new linear modelling method for the dynamic
analysis of a #exible beam undergoing overall motion was introduced [21]. This modelling
method employs hybrid deformation variables (including a stretch variable) along with
a special linear strain measure. With this method, not only the accuracy problem of the
classical linear modelling method but also the ine$ciency of non-linear modelling methods
could be resolved. However, since this modelling method employs the assumed mode
method, the comparison functions should be selected as the basis function. In a situation,
where the comparison functions are not available, the assumed mode method cannot be
applied. To overcome this problem, it is necessary to develop a "nite element analysis, based
on the new modelling method, which requires only admissible functions instead of the
comparison functions.

In this study, vibration and transient analysis of rotating cantilever beams are studied
using the "nite element method. For the purpose, the linear partial di!erential equations are
derived for a rotating cantilever beam by Hamilton's principle. During the derivation, the
chordwise and #apwise deformations as well as the stretch deformation are employed to
describe the motion of the cantilever beam. From the partial di!erential equations and the
associated boundary conditions, the weak forms are derived for the chordwise and #apwise
motions. After the weak forms are spatially discretized with two-node beam elements which
are de"ned in this paper, a set of ordinary di!erential equations are obtained for the
chordwise and #apwise motions respectively. Based on the ordinary di!erential equations,
the behaviours of the natural frequencies are investigated for the variation of the rotating
speed. Furthermore, the transient responses and distributions of the deformations and the
stresses are computed by the generalized-a method [22] when the rotating speed is
prescribed. The e!ects of the rotating speed pro"le on the vibrations of the beam are also
investigated.

2. EQUATIONS OF MOTION

Consider a cantilever beam of a length ¸, which is "xed at point O of a rigid hub with
a radius a, as shown in Figure 1. The beam is modelled as the Euler}Bernoulli beam and it
has homogeneous, uniform and isotropic material properties along the beam. The hub is
rotating about the axis of symmetry with a rotating speed X. In Figure 1, the straight and



Figure 1. Con"guration of a rotating cantilever beam.
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curved beams represent the beams before and after deformation. The orthogonal unit
vectors i, j and k are rotating with the hub: i is along the beam before deformation, j is in the
tangential direction of the hub, and k is in the direction of the hub axis. Using the Cartesian
co-ordinates, the deformations of the beam in the directions of i, j and k are generally
described by the axial deformation u, the chordwise deformation v and the #apwise
deformation w, respectively, when point P* moves to point P.

As mentioned in section 1, use of the stretch deformation s has an advantage over use of
the axial deformation u. According to reference [21], u is related to s, v and w:
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in which g is a dummy variable. Similarly, the time derivative of u is given by
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where the superposed dots indicate the derivative with respect to time, and
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The kinetic and strain energies of the rotating cantilever beam can be expressed in terms
of the stretch, chordwise and #apwise deformations. When the cantilever beam is rotating
with X, the kinetic energy of the beam is given by
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where o and A are the mass density and cross-sectional area of the beam; v
P

is the velocity
vector of a particle at point P:
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Substitution of equation (6) into equation (5) after introducing equations (1) and (3) to
equation (6) leads to
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(7)

On the other hand, the strain energy for the beam can be expressed as
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where E is Young's modulus; I
y

and I
z

are the area moments of inertia about the y- and
z- axes respectively. For simplicity, this study assumes that E, A, I

y
and I

z
are constant

along the beam, i.e., independent of x.
The equations of motion are derived by applying Hamilton's principle, which is given by
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where t
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and t
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are arbitrary time and L is the Lagrangian density function
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Taking the variation of the Lagrangian density function, integrating equation (9) by parts,
and then collecting all the terms of the integrand with respect to ds, dv and dw, the
coe$cients of ds, dv and dw result in the following equations of motion:
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Note that equations (11)}(13) are non-linear partial di!erential equations. Consideration of
the non-conservative applied forces in the y and z directions and linearization of the
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non-linear equations yield the following linear partial di!erential equations:
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where p
v

and p
w

are the applied forces per unit length in the y and z directions. It is
interesting that equations (14) and (15) are coupled with each other while equation (16) is
not coupled with the other equations. In this paper, a motion described by equations (14)
and (15) is called the chordwise motion, and a motion described by equation (16) is called
the #apwise motion. The boundary conditions corresponding to equations (14)}(16) are
given by
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Equation (17) is for the essential or geometric boundary conditions and equation (18) is for
the natural boundary conditions. In addition, the initial conditions may be imposed by
equations (14)}(16).

3. FINITE ELEMENT ANALYSIS

The partial di!erential equations given by equations (14)}(16) are solved by the "nite
element method in this study. From the partial di!erential equations and the boundary
conditions, the weak forms or the variational forms are derived. Spatial discretization of the
weak forms leads to the initial value problems, which are constituted by systems of the
ordinary di!erential equations and the corresponding initial conditions. When time
histories of responses are required, the time integration is applied to the initial value
problems. However, if the dynamic characteristics of a given system are required, the
eigenvalue problems are deduced from the ordinary di!erential equations.

Before derivation of the weak forms, it is necessary to de"ne the trial and weighting
functions. In one-dimensional problems, the Hilbert space, H1, is de"ned as

H1"Gv Dv is continuous on [0, ¸], Lv/Lx is piecewise continuous, and
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Equation (19) means that the strain energy of a system is bounded if a solution is
represented by a function in the Hilbert space. The trial function is de"ned as a function in
the Hilbert space H1, satisfying all the boundary conditions, namely, both the essential and
natural boundary conditions. This means that the trial function is a sort of the comparison
function. The trial functions for the stretch, chordwise and #apwise deformations, related to
equations (14)}(18), can be de"ned as follows:
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where <
s
is the trial function space for the stretch deformation and <

vw
are the ones for the

chordwise and #apwise deformations. Equation (21) implies that not only the deformations
v and w but also their derivatives should be in the Hilbert space. This is because the slopes as
well as the deformations should be described as degrees of freedom in the beam theory of the
"nite element method. On the other hand, the weighting function is de"ned as a function in
the H1 space, which should be zero on the boundaries where the essential boundary
conditions are prescribed. Hence, the weighting functions for the stretch, chordwise and
#apwise deformations are de"ned by
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The weak forms need to be derived from the strong forms given by the partial di!erential
equations and the corresponding boundary conditions. Since equations (14) and (15) are
coupled equations but equation (16) is not a coupled one, this study derives two weak forms:
a weak form for the chordwise motion and a weak form for the #apwise motion. The weak
form for the chordwise motion is obtained by multiplying equations (14) and (15) by the
weighting functions sN and vN , respectively, summing the equations, and then integrating the
resultant equation by parts over the length ¸. The weak form for the chordwise motion can
be expressed as
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In a similar manner, the weak form for the #apwise motion is derived by multiplying
equation (16) by the weighting function wN and then integrating the equation by parts:
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Figure 2. Element and node numbers of a "nite element model.
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It is noted that the natural boundary conditions given by equation (18) are satis"ed by the
above weak forms.

Next, consider the local description of the deformations in an element. In this study the
cantilever beam is discretized into N two-node elements as shown in Figure 2, where the
numbers above and below the beam represent the element and node numbers respectively.
In element e de"ned by node numbers e and e#1, the stretch, chordwise and #apwise
deformations can be approximated as linear or cubic polynomials:
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where a
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's are coe$cients to be determined by the deformations and corresponding slopes at

the nodes. Denote the stretch deformation at node e by s
e
, the chordwise and #apwise

deformations by v
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From equations (26) and (27), the stretch, chordwise and #apwise deformations at an
arbitrary point in element e can be expressed in terms of those at the nodes. Hence, equation
(26) may be rewritten as
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Equation (28) implies that the stretch and chordwise deformations are described by the
degrees of freedom of s
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described by the degrees of freedom of w
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Figure 3. Finite elements for (a) the chordwise motion and (b) the #apwise motion.
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elements for the chordwise and #apwise motions. On the other hand, the weighting
functions for the stretch, chordwise and #apwise deformations are given by

sN"(gsv
e
)TN

s
, vN"(gsv

e
)TN

v
, wN "(gw

e
)TN

w
, (32)

where gsv
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and gw
e

are arbitrary 6]1 and 4]1 column vectors respectively.
A solution of the "nite element method, that is, an approximate solution, is obtained in

a "nite dimensional function space. In order to "nd approximate solutions of equations
(14)}(16), the weak forms given by equations (24) and (25) are discretized by using the
two-node beam elements de"ned above. After discretizing the domain [0, ¸] into the
subdomains [x

e
, x

e`1
], e"1, 2,2 , N, as shown in Figure 2, introduction of equations (28)

and (32) to equations (24) and (25) yields discretized equations. The discretized equation for
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and the element motion-induced sti!ness matrices for the chordwise motion; f sv
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element load vector for the chordwise motion. These element matrices and vector may be
expressed as
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In the same way, the discretized equation for the #apwise motion are given by
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where mw
e
, kw

e
and sw

e
are the element mass, the element sti!ness and the element

motion-induced sti!ness matrices for the #apwise motion and fw
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is the element load vector
for the #apwise motion:
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Since gsv
e

and gw
e

are arbitrary vectors, by assembling the element matrices and vectors,
equations (33) and (35) can be transformed to the global equations. The global equation for
the chordwise motion is given by
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where d
sv

is the global deformation vector for the chordwise motion; M
sv

, G
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, K
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and
S
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are the global mass, the global gyroscopic, the global sti!ness and the global
motion-induced sti!ness matrices; f
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is the global load vector.
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in which A denotes the assembly operator. Similarly, the global equation for the #apwise
motion becomes
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where d
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is the global deformation vector for the #apwise motion, M
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global matrices, and f
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is the global load vector.
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Since s
1
, v

1
, w

1
, h

1
and t

1
are known degrees of freedom in the cantilever model, i.e.,

non-active degrees of freedom, they are not involved in equations (38) and (41) that consist
of active degrees of freedom.

4. NATURAL FREQUENCIES

For simplicity of numerical investigations, assume that the beam has equal area moments
of inertia about the y- and z-axis, i.e., I

y
"I

z
. Furthermore, for convenience of discussions,

dimensionless parameters are introduced as follows:

q"
t

¹

, m"
x

¸

, d"
a

¸

, c"¹X, a"S
A¸2

I
z

, j"¹2XQ , (43)
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where

¹"S
oA¸4

EI
z

. (44)

From the discretized equations of motion given by equations (37) and (40), the eigenvalue
problems are derived, in which the natural frequencies can be computed for the chordwise
and #apwise motions. Assume the steady state solutions of equations (37) and (40) as

d
sv
"X

sv
e*usvq, d

w
"X

w
e*uwq, (45)

where i"J!1; u
sv

and u
w

are the dimensionless natural frequencies for the chordwise
and #apwise motions; X

sv
and X

w
are the amplitudes of vibrations. Neglecting the applied

forces and the rotating acceleration, substitution of equation (45) into equations (37) and
(40) leads to the eigenvalue problems given by

M[K
sv
#X2(S

sv
!M

sv
)]#2iu

sv
XG

sv
!u2

sv
M

sv
NX

sv
"0, (46)

M(K
w
#X2S

w
)!u2

w
M

w
NX

w
"0. (47)

Consider the convergence characteristics of the natural frequencies, when the beam is
stationary, i.e., c"0 and values of d and a are 0 and 70 respectively. A value of a"70
guarantees that the beam is slender enough for the Euler}Bernoulli beam theory to be
applied. As shown in Table 1, the natural frequencies for the chordwise motion, which are
obtained from equation (46), converge to the exact values as the number of elements
increases. The convergence test, in the case of the #apwise motion, shows that the natural
frequencies computed from equation (47) are identical to those of the bending modes for the
chordwise motion presented in Table 1.

The proposed "nite element method can be veri"ed by comparing the natural frequencies
computed from the present study and reference [10]. All of the computations below use the
100 two-node beam elements in the discretized models for the chordwise and #apwise
motions. Table 2 shows that, for a"70 and various values of d and c, the "rst dimensionless
natural frequencies for the chordwise motion computed from the present method are very
TABLE 1

Convergence characteristics of the dimensionless natural frequencies for the chordwise motion
when d"c"0 and a"70

Bending modes Stretching mode
No. of

elements 1st 2nd 3rd 4th 1st 2nd

5 3)5161 22)0455 61)9188 122)3197 110)4085 493)2637
10 3)5160 22)0352 61)7129 121)0171 110)0688 421)1489
20 3)5160 22)0345 61)6982 120)7686 109)9840 417)2923
40 3)5160 22)0345 61)6973 120)9024 109)9628 393)0742
60 3)5160 22)0345 61)6972 120)9033 109)9590 370)6638
80 3)5160 22)0345 61)6972 120)8444 109)9576 334)9260

100 3)5160 22)0345 61)6972 120)9019 109)9569 330)8796

Exact 3)5160 22)0345 61)6972 120)9019 109)9557 329)8672



TABLE 2

Comparison of the ,rst dimensionless natural frequencies for the chordwise
motion when a"70

Presentd c
(N"100)

Reference [10]

0 2 3)6196 3)6196
10 4)9700 4)9703
50 7)3337 7)5540

1 2 4)3978 4)3978
10 13)0482 13)0494
50 41)2275 41)3791

5 2 6)6430 6)6430
10 27)2660 27)2761
50 74)0031 74)1949

TABLE 3

Comparison of the ,rst and second dimensionless natural frequencies for the -apwise motion
when d"0 and a"70

First natural frequency Second natural frequency

c
Present

Reference [10]
Present

Reference [10](N"100) (N"100)

0 3)5160 3)5160 22)0345 22)0345
1 3)6816 3)6816 22)1810 22)1810
2 4)1373 4)1373 22)6149 22)6149
3 4)7973 4)7973 23)3203 23)3203
4 5)5850 5)5850 24)2733 24)2734
5 6)4495 6)4496 25)4461 25)4461
6 7)3604 7)3604 26)8091 26)8092
7 8)2996 8)2997 28)3341 28)3342
8 9)2568 9)2569 29)9954 29)9956
9 10)2257 10)2258 31)7705 31)7709

10 11)2023 11)2025 33)6404 33)6409

ROTATING CANTILEVER BEAM 157
close to those in reference [10]. Furthermore, the "rst and second natural frequencies for
the #apwise motion are compared between the present study and reference [10] when d"0
and a"70. This comparison for various values of c is presented in Table 3, in which the
dimensionless natural frequencies computed by the two methods agree well with each other.

It is interesting to investigate the behaviours of the natural frequencies for variation of the
rotating speed. Figure 4 demonstrates the variation of the dimensionless natural frequencies
for the dimensionless rotating speed, when j"0, d"0.1 and a"70. In the curves of the
natural frequencies versus the rotating speed, the main di!erences between the chordwise
and #apwise motions are the presence of the stretching modes and the occurrence of the
divergence instability. As shown in Figure 4(b), the natural frequencies of the #apwise
bending motion monotonically increase with the rotating speed. However, Figure 4(a)
illustrates that in the chordwise motion the stretching modes denoted by S1 and S2 are



Figure 4. Variation of the dimensionless natural frequencies for the dimensionless rotating speed c when j"0,
d"0)1 and a"70: (a) the chordwise motion; and (b) the #apwise motion.
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coupled with the bending modes denoted by B1, B2 and so on. This coupling e!ect between
the stretching and bending modes results in the well-known veering phenomena shown in
Figure 4(a), where it is observed that two natural frequency loci veer rather than cross. For
instance, S1 and B3 veer at c"23)4, S2 and B6 do at c"13)8, and B6 and B5 do at c"33)0.
As the angular speed increases, the associated mode shapes change abruptly around the
veering region [10]. It is also observed that the natural frequency of the "rst chordwise
bending mode denoted B1 becomes zero at a speci"c rotating speed. This speed is the
critical speed for the divergence instability of the rotating beam.

5. TIME RESPONSES

In this section, time responses for a rotating beam with d"0)1 and a"70 are computed
using the generalized-a method [22], when the rotating speed is prescribed. The "nite
element model has the 100 two-node beam elements. This study considers two types of
rotating speed pro"les: the smooth pro"le and the non-smooth pro"le. The smooth speed
pro"le is given by

c"G
q!

5

n
sin

nq
5

if 0)q)10,

10 if 10)q)40,

50!q#
5

n
sin

nq
5

if 40)q)50

(48)

while the non-smooth speed pro"le is given by

c"G
q if 0)q)10,

10 if 10)q)40,

50!q if 40)q)50.

(49)

These dimensionless rotating speed pro"les are plotted in Figure 5. The zero initial
conditions are imposed on the chordwise and #apwise motions:

d
sv

(0)"d
w
(0)"0, d0

sv
(0)"d0

w
(0)"0. (50)



Figure 5. Pro"les of the dimensionless rotating speed c for the dimensionless time q: (a) the smooth pro"le and
(b) the non-smooth pro"le.

Figure 6. Deformation time histories at m"1 for the smooth rotating speed pro"le: (a) the dimensionless stretch
deformation s/¸; (b) the dimensionless chordwise deformation v/¸; and (c) the dimensionless #apwise deformation
w/¸.
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Furthermore, assume that no force is applied in the chordwise direction but the unit
impulsive pressure is applied in the #apwise direction.

Time histories of the deformations at the free end, i.e., at m"1 are computed when the
rotating speed is prescribed. Figures 6 and 7 show the time histories of the deformation for
the smooth and non-smooth pro"les respectively. Note that the non-smooth speed pro"le
incurs larger vibration in the chordwise motion than the smooth one. Since the non-smooth
speed pro"le yields a discontinuous rotating acceleration, the pro"le is equivalent to
a sudden change in the applied load. Therefore, when the beam rotates with the smooth
speed pro"le, a large amount of vibration is reduced. On the other hand, when, at the initial
time, the unit impulsive pressure is applied to the rotating beam in the #apwise direction,
the amplitude of the #apwise vibration is in#uenced by the rotating speed. Figures 6(c) and
7(c) illustrate that the amplitude of the #apwise vibration decreases, remains constant and
then increases, as the rotating speed increases, remains constant and decreases. It is also
observed that the period of vibration seems to be inversely proportional to the rotating
speed. Note that the smoothness of the rotating speed pro"le makes no signi"cant di!erence
in the #apwise deformations, as shown in Figures 6(c) and 7(c).



Figure 7. Deformation time histories at m"1 for the non-smooth rotating speed pro"le: (a) the dimensionless
stretch deformation s/¸; (b) the dimensionless chordwise deformation v/¸; and (c) the dimensionless #apwise
deformation w/¸.

160 J. CHUNG AND H. H. YOO
When the rotating speed is constant, the periods of the chordwise and #apwise vibrations
are closely related to the "rst natural frequencies for the chordwise and #apwise motions.
Scrutinize the time responses during 10)q)40 when the rotating speed is constant. The
oscillations for the chordwise motion during the interval, as shown in Figures 6(a), 6(b), 7(a)
and 7(b), have an average dimensionless period of 1)0017, while the oscillations for the
#apwise motion, as shown in Figures 6(c) and 7(c), have a period of 0)5299. From these
periods, the "rst dimensionless natural frequencies for the chordwise and #apwise motions
are computed as 6)2725 and 11)8573 respectively. When d"0)1, a"70 and c"10, the "rst
dimensionless natural frequencies, which are read out from Figure 4 are 6)2726 for the
chordwise motion and 11)8578 for the #apwise motion. Hence the "rst natural frequencies
can be obtained from the time responses when the rotating speed is constant.

Denoting the stretching, the chordwise bending, and the #apwise bending stresses by p
s
,

p
v
and p

w
, respectively, the maximum values of the stresses are given by
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"E

Ls
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, p

v
"!

EB

2

L2v

Lx2
, p
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"!

EH

2

L2w

Lx2
, (51)

where B and H are the width and height of the beam. Substituting equation (28) into
equation (51), the stresses in an element can be expressed in terms of the nodal degrees of
freedom of s
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, w

e
,t

e
, s

e`1
, v

e`1
, h

e`1
, w

e`1
and t

e`1
:

p
s
"E

s
e`1

!s
e

h
e

, (52)

p
v
"!

EB

h2
e
C
3(v

e
!v

e`1
) (2x!x

e
!x

e`1
)

h
e

#h
e
(3x!x

e
!2x

e`1
)

#h
e`1

(3x!2x
e
!x

e`1
)D , (53)



Figure 8. Stress time histories at m"0 for the smooth rotating speed pro"le: (a) the dimensionless stretching
stress p

s
/E; (b) the dimensionless chordwise bending stress p

v
/E; and (c) the dimensionless #apwise bending stress

p
w
/E.

Figure 9. Stress time histories at m"0 for the non-smooth rotating speed pro"le: (a) the dimensionless
stretching stress p

s
/E; (b) the dimensionless chordwise bending stress p

v
/E; and (c) the dimensionless #apwise

bending stress p
w
/E.
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Time histories of the stresses can be obtained by using equations (52)}(54), once the
deformations are computed from equations (37) and (40). Since the stress of a cantilever



Figure 10. Deformation distributions at q"5 for the smooth rotating speed pro"le: (a) the dimensionless
stretch deformation s/¸; (b) the dimensionless chordwise deformation v/¸; and (c) the dimensionless #apwise
deformation w/¸.

Figure 11. Stress distributions at q"5 for the smooth rotating speed pro"le: (a) the dimensionless stretching
stress p

s
/E; (b) the dimensionless chordwise bending stress p

v
/E; and (c) the dimensionless #apwise bending stress

p
w
/E.
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beam is generally maximum at the "xed end, the time responses of the stresses are computed
at this end, namely, at m"0. Figures 8(a), 8(b), 9(a) and 9(b) illustrate that the time histories
of the stretching and chordwise bending stresses for the non-smooth rotating speed pro"le
have larger oscillations than those for the smooth speed pro"le. This phenomenon occurs in
the time histories of the deformation, as shown in Figures 6(a), 6(b), 7(a) and 7(b). However,
in Figures 8(c) and 9(c), it is di$cult to "nd a di!erence between the #apwise bending
stresses with the smooth and non-smooth speed pro"les.
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Finally, the distributions of the deformations and stresses are investigated when the
rotating speed of the beam changes with the smooth speed pro"le de"ned by equation (48).
The distributions are computed when q"5, that is, when c"5 and j"2. In this condition,
the rotating beam has a positive angular acceleration which yields the inertia e!ect in the
tangential direction. As shown in Figure 10, the magnitudes of all the deformations are zero
at the "xed end or at m"0, increase with m, and become the maximum at the free end or at
m"1. In fact, the deformation distributions are similar to the "rst mode shapes of the
deformations for the stationary cantilever beam. Accordingly, it is reasonable that in Figure
10(b) and 10(c) the slopes of the chordwise and #apwise deformations are zero at the "xed
end. However, the stress distributions plotted in Figure 11 show that the stretching and
chordwise bending stresses have maximum values at the "xed end. This is coincidental with
the fact that the stretching and chordwise bending stresses originate from the centrifugal
force and the bending moment respectively. Since the impulsive pressure is applied to the
beam in the #apwise direction, the distribution of the #apwise bending stress has a more
complex pattern compared to those of the stretching and chordwise stresses.

6. CONCLUSIONS

The paper presents a "nite element analysis for a rotating cantilever beam. Using the
stretch deformation instead of the conventional axial deformation, the linear partial
di!erential equations are derived for a rotating cantilever beam undergoing a prescribed
rotating motion. In these partial di!erential equations, the stretch and chordwise
deformations are coupled with each other but the #apwise deformation is not coupled with
the other deformations. From the partial di!erential equations and the associated boundary
conditions are derived two weak forms: one is for the chordwise motion and the other is for
the #apwise motion. With newly de"ned two-node beam elements for these motions, the
weak forms are spatially discretized and are transformed into matrix}vector equations.

Based upon the matrix}vector equations, numerical investigations are performed not
only for the natural frequencies but also for the time responses and distributions of the
deformations and stresses. The analysis for the natural frequencies shows that the stretch
deformation results in the di!erences between the chordwise and #apwise motions: the
veering phenomena and the divergence instability. It is found from the time responses that
the non-smooth pro"le of the rotating speed incurs larger vibration in the chordwise
motion than the smooth one. Therefore, if the beam rotates with a smooth speed
pro"le, a large amount of vibration can be reduced. When the impulsive pressure is applied
in the #apwise direction, the vibration amplitudes of the #apwise deformation are
dependent on the rotating speed while those of the #apwise bending stress are independent
of the speed.
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